
A Report on the Analysis of Metrics and Measures
on Software Quality Factors – A Literature Study

1Vanitha N, 2ThirumalaiSelvi R

1Department of Computer Science, Women’s Christian College, Chennai, India
 2 Department of Computer Science, Govt Arts College for Men, Chennai, India

Abstract - Software quality is the degree to which a component,
system or process meets specified requirements and meets
customer or user needs or expectations. Software quality is
best described as a combination of several factors. The aim of
this paper was to investigate the measures available to
determine different quality factors. The identification of
factors and as well as the metrics and measures was done on
the basis of the literature survey by studying and analysis
various research papers. The results benefit software
developers, researchers and academicians to easily identify the
metrics used to measure the quality characteristics of the
software. Furthermore, the work aimed at providing some
suggestions, using the potential deficiencies detected as a basis.

Keywords - beta-factor , Clone detection, Structuredness.

I. INTRODUCTION

In recent times, the growth of software has increased
manifolds. Software products are developed for corporate
world as well as for individuals. With the increase in the
availability of software the focus has shifted on software
quality evaluation and enhancement. Today’s user is aware
of the expectations from the software and during the
selection of software product the user validates the quality
of the software product, in terms of quality factors.
Improvement of quality after the completion of software is
unadvisable as it increases the cost and is almost remaking
the product. To overcome this issue the evaluation of
software product quality is proposed at developer’s
perspective during the formulation of software product [1].
Quality measurement is usually expressed in terms of
metrics. Software metric is a measurable property which is
an indicator of one or more of the quality criteria that we
are seeking to measure [12]. Many of the studies in the past
have focused on factors and sub factors that affect the
software quality and much of the previous studies discuss
about the metrics and measurements used to measure the
level of particular quality factor in their papers. This paper
assesses the measures and metrics of various quality factors
used to determine the quality of the software systems and
are discussed. This Literature Review aims to identify and
analyze the metrics and measures for certain quality factors.
The objectives of this review are to provide a general
overview of the software metrics and measures and to guide
researchers and readers to follow which metrics can be used
to measure the different quality factors.

The remainder of this paper is organized as follows.
Section II provides systematic literature review

methodology Section III provides a background to the field
and presents some relevant surveys. Results of the study are
presented in Section IV .Section V concludes the paper.

II. METHODOLOGY

In this paper, systematic approach to reviewing the
literature on the analysis of the metrics and measures of
quality factors follow the approach identified by
Kitchenham and Charters[15].

A. Research Questions

The aim of this literature review is to analyze the metrics
and measures for certain quality factors. This analysis is
based on the research questions in TABLE 1.

TABLE I
 RESEARCH QUESTIONS ADDRESSED

Research Questions
RQ1 Which quality factor can be easily

approachable for measuring?
RQ2 Which measure should be used for certain

metric to determine different quality factors?

B. Inclusion Criteria

A study of Journal paper or Conference proceedings
published in English to be included in this review. From the
publication of similar studies, only the most comprehensive
or recent to be included.

C. Identification of Papers

Included papers were published between the year 2007
and 2014. Key word search, using the search engines were
Google Schloar, Scopus, IEEExplore and ScienceDirect.
These search engines covered the majority of software
engineering publications and the search string used for this
is given in references. Totally 52 papers were identified , 27
papers were rejected as not relevant to this research and
included 25 papers finally.

III. BACKGROUND AND RELATED WORK
Metric is a unit used for describing or measuring an

attribute. During testing and operational stages external
metrics applied and during requirement, design and coding
internal metrics applied, basically for non-executable
software, to measure quality of intermediate deliverables.

Quality in use metrics identifies the metrics used to
measure the effects of the combined quality characteristics
for the user. More specifically, these metrics care about the

Vanitha N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6591-6595

www.ijcsit.com 6591

quality in satisfaction of customers. The metrics for
effectiveness, performance, productivity and safety in real
environment fall in this category [10]. In the end, only
external factors matter, but the key to achieving these
external factors is in the internal ones: for the users to enjoy
the visible qualities, the designers and implementers must
have applied internal techniques that will ensure the hidden
qualities [7].

A. Dynamic Metrics and Measures

Dynamic Metrics are used to measure specific runtime
properties of programs, components, subsystems and
systems. According to Tahir et al[2] , Sandhu et al[4] and
Choi et al [16], the following are some of the metric type
found to predict the qualities related to dynamic systems
using the measures given in Table 3. A dynamic analyser
tool has been developed using aspect – oriented
programming (Aspectj) to perform dynamic analysis of java
applications for the purpose of collecting run-time data
needed for the dynamic cohesion metrics and dynamic
coupling tracer application has been developed in Aspectj
for the purpose of computation of the coupling [3].

TABLE II

DYNAMIC METRICS AND QUALITY FACTORS COVERAGE

Metrics Quality Factors Measures

Cohesion Reusability Measures each instance of
variable by the number of
time it is accessed
Message passing load

Coupling

Understandability Message passing load
Reliability Real-time Object Oriented

Modelling (ROOM)Charts
To predict faults Base-Aspect coupling and

Crosscutting Degree of an
Aspect

Complexity Understandability Decision points in code
Polymorphism Reusability Polymorphic behaviour

index = P / Total dispatches
Where ,
Total dispatches = (P + NP)
P = Unique polymorphic
dispatches executed
NP = Unique non-
polymorphic dispatches
executed

Efficiency Average Changing Rate of
Virtual methods(ACRV)

B. Object –Oriented Design Metrics and Measures

According to Srinivasan et al [5] the following are the
best measures to assess quality of Object –Oriented design
in design phase.

1) Methods-Per-Class Factor (MPCF): The Method-Per-
Class Factor (MPCF) is defined as the ratio of the Number
of Public Methods (NPM) to the sum of the Number of
Public Methods (NPM) and Number of Non Public Methods
(NNPM) in the class. Method-Per-Class Factor excludes
inherited methods.

2) Attributes-Per-Class Factor (APCF): The Attribute-
Per-Class Factor (APCF) is defined as the ratio of the
Number of Private (Protected) Attributes (NPA) to the sum
of the Number of Private Attributes (NPA) and Number of

Non Private Attributes (NNPA) in the class. Attribute-Per-
Class Factor excludes inherited attributes.

3) Method Inheritance Factor (MIF): The Method
Inheritance Factor (MIF) is defined as the ratio of the
Number of Inherited Methods (NIM) to the sum of the
Number of Inherited Methods (NIM) and the Number of
Defined Methods (NDM) in the class.

4) Attribute Inheritance Factor (AIF): The Attribute
Inheritance Factor (AIF) is defined as the ratio of the
Number of Inherited Attributes (NIA) to the sum of Number
of Inherited Attributes (NIA) and the Number of Defined
Attributes (NDA) in the class.

5) Coupling Factor (CF): NAC is the Number of Actual
Couplings with other classes and NPC is the Number of
Possible Couplings of this class with other classes of the
system. Clearly, the number of possible couplings of a class
with other classes of the system is one less than the number
of classes. Coupling Factor for a class is defined as Number
of other classes to which coupled / (Number of classes – 1).

6) Lack-of-Cohesion Factor (LCF): NDMP is the
Number of Dissimilar Method Pairs in the class and NPMP
is the Number of Possible Method Pairs in the class. If two
methods access one or more common attributes, then these
two methods are similar. And if two methods have no
commonly accessed attribute, then these two methods are
dissimilar. Lack-of-Cohesion is defined as if m is the
number of methods in the class, then the number of possible
method pair is m (m-1)/2.

7) Package Cohesion: From the prior literature [13], it
has been found that there is a strong interconnection
between coupling and cohesion in the way of measuring its
level.

Information – Flow – based coupling (ICP) and
Conceptual Coupling Between Classes (CCBC) are the two
coupling metrics to measure package Cohesion.ICP
measure capture highest cohesion levels, which allows us to
get information of how much information flowing between
classes. CCBC measure captures lower cohesion levels,
which allows us to identify semantically related classes in a
module. Thus the aggregated measure of the above is used
to determine classes that should belong together in a
package.

TABLE III

OBJECT ORIENTED DESIGN METRICS AND QUALITY FACTORS
COVERAGE

Object – Oriented
Design Metrics

Quality Factors Measures

Encapsulation Understandability APCF

Abstraction
Effectiveness,
Extendibility

MIF,AIF

Inheritance
Effectiveness,
Extendibility

MIF,AIF

Coupling Understandability CF
Cohesion Understandability LCF

Package Cohesion Understandability ICP, CCBC

Complexity
Functionality,

Reusability
MPCF

Vanitha N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6591-6595

www.ijcsit.com 6592

C. Sub-factor Quality Metrics

1) Measuring Structuredness: Alan Gillies [12] proposed
that well-structured code will be easier to maintain or adapt
and it may be calculated in terms of the average length of
code modules within the program.

Structuredness α modularity =
௟௜௡௘௦	௢௙	௖௢ௗ௘௡௨௠௕௘௥	௢௙	௠௢ௗ௨௟௘௦

According to Alan Gillies [12] McCall’s approach is
more quantitative, using scores derived from equations such
as

McCall’s structuredness metric =
௡଴ଵ௡௧௢௧

n01 = no. of modules containing one or zero exit points
only

ntot = total number of modules

Scores are normalized to a range between 0 and 1.

2) Measuring Readability: In order to assess how
documentation may assist in the usability of a piece of
software [12]. According to Alan Gillies [12] readability
can be calculated using Flesch –Kincaid Readability Index
and Fog Index measurement methods:

Grade level = 0.39 + b-c

Where a= the number of words in the sentence

b= the mean number of syllables per 100 words

c= 15.59

The score averages 7 to 8

The other method is the Fog Index (Gunning , 1968):

Fog Index = 0.4a + b

Where a- the number of words in a sentence

 b = the percentage of words with more than two syllables

3) Measuring Reusability: Gaffney and Durek [1989]
proposed model for software reuse and shows the cost of
reusing software components as follows [7]:

Relative cost for software development = [(Relative cost
of all new code) * (Proportion of new code)] + [(Relative
cost of reused software) *(Proportion of reused software)] .

4) Measuring Reliability: Reliability is measured as the
probability that a system will not fail to perform its intended
functions over a specified time interval [7].

Mean Time between Failures is the most commonly used
measure. By measuring the complexity of the software
when the change is designed, software reliability can be
estimated indirectly. Software reliability can be measured
from the following reliability metrics defined by Holmberga
et al [14] are:

The probability that the software is imperfect (not fault-
free): P(SW imperfect)

The probability distribution for number of residual faults:
P(N =n), N = number of faults

The probability (or failure rate) of the critical digital system
failure (due to a software fault): P(SW failure)

The conditional probability of a common cause failure
(called also beta-factor).
 Probability of imperfection can be estimated by the
following ways described in the paper Holmberga et al [14]:

• Empirical evidence of residual faults in the similar
software systems.

• Derive an estimate of the residual number of faults by
modeling the V&V development process.

• Measuring the Software complexity.

5) Measuring Portability: According to Mallikarjuna et
al [7], analysis of porting costs involves analyzing the
match between the interfaces of the software unit and those
of the target. A figure for degree of portability can then be
computed for a specific software unit is measured as
follows.

DP = (cost to port / cost to redevelop)

If this value is greater than one, then porting is more cost
effective than redevelopment. Moreover, porting costs will
be inversely proportional to the DP; a value of one
represents “perfect portability”.

TABLE IV

STRUCTURAL AND SUB-FACTOR QUALITY METRICS AND
QUALITY FACTORS COVERAGE

Metrics Quality Factors Measures
Structuredness Usability McCall’s Approach

Readability Usability
Flesch –Kincaid
Readability Index

Cost for
Software
Development

Reusability
Gaffney & Durek ‘s
cost model

Complexity Reliability
Mean Time between
failures

Portability Reliability
DP = (cost to port /
cost to redevelop)

Structural
Metrics

Understandability
Correlation
Analysis

Modifiability Regression Analysis

D. Structural Metrics for Process Models

Some of the structural metrics for Process Models
explained in the prior literature Garcia et al [8] are as
follows:

• Number of nodes : number of activities and routing

elements in a model.
• Diameter : The length of the longest path from a start

node to an end node.
• Density : Ratio of the total number of arcs to the

maximum number of arc.
• The Coefficient of Connectivity : Ratio of the total

number of arcs in a process model to its total number of
nodes.

• The Average Gateway Degree : Expresses the average of
the number of both incoming and outgoing arcs of the
gateway nodes in the process model.

Vanitha N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6591-6595

www.ijcsit.com 6593

• The Maximum Gateway Degree : Captures the maximum
sum of incoming and outgoing arcs of these gateway
nodes.

• Separability :Ratio of the number of cut-vertices on the
one hand to the total number of nodes in the process
model on the other.

• Sequentiality: Degree to which the model is constructed
out of pure sequences of tasks.

• Depth :Maximum nesting of structured blocks in a
process model.

• Gateway Mismatch :The sum of gateway pairs that do
not match with each other, e.g. when an AND-split is
followed by an OR-join.

• Gateway Heterogeneity : Different types of gateways are
used in a model.

• Cyclicity :The number of nodes in a cycle to the sum of
all nodes.

• Concurrency : The maximum number of paths in a
process model that may be concurrently activate due to
AND-splits and OR-splits.

1)Measuring Modifiability and understandability: From
Garcia et al [8], it has been found that understanding time is
strongly correlated with number of nodes, diameter, density,
average gateway degree, depth, gateway mismatch, and
gateway heterogeneity .

The correlation analysis indicates that there is a
significant relationship between the time and efficiency of
understandability and structural metrics.

 For efficiency for modifiability, it has been found that
significant correlations with average (.745, .005) and
maximum gateway degree (.763, .004), depth (-.751, .005),
gateway mismatch (-.812, .001) and gateway hetero-geneity
(.853, .000) is needed [8].

Gracia et al[8] proposed that the correlation analysis
suggests it is necessary to investigate the quantitative
impact of structural metrics on the respective time, accuracy
and efficiency dependent variables of both
understandability and modifiability. This goal was achieved
through the statistical estimation of a linear regression
analysis with the experimental data and the best indicators
for modifiability are gateway mismatch, density and
sequentiality ratio using regression analysis.

E. Technical Documentation Quality Metrics

From Wingkvist et al [6] it has been found, that
comparing the text on paragraph level and XML structures,
Clone detection determines the similarity between
documents and size of two documents that is unique which
are the indications of one of the quality of maintainability in
technical documentation.

TABLE V

TECHNICAL DOCUMENTATION QUALITY METRICS AND
QUALITY FACTORS COVERAGE

Metrics
Quality
Factors

Tool used to
calculate
metrics

Clone detection Maintainability
VizzAnalyzer

Test success and Coverage Usability

Test coverage measurement statically analyzes the whole
structure of a technical documentation, dynamically logs the
documents and hyperlinks followed during testing, and
correlates the static and dynamic information [6],which are
the indications of one of the quality of usability in technical
documentation. DocFactory is one of the technical
documentation producers and VizzAnalyzer is an analysis
tool to assess the technical quality of documents which
supports metrics, such as, clone detection and coverage
analysis. To visualize the metrics results tools such as
Microsoft Excel and the yEd graph viewer, can be used.

IV. RESULTS OF THE STUDY

A. Answering Research Questions
RQ1: Which quality factor can be easily approachable for
measuring?

Analyzing metrics and measures for different quality
factors across the 25 studies in detail, suggests that
understandability could be easily approachable for
measuring. Fig. 1 showed the availability of many measures
to estimate different quality factors. Our results provide
some evidence to suggest that many metrics and measures
are available to determine the quality for Object- oriented
systems.

Fig. 1. Level of Availability of measures to estimate Quality factors

RQ2: Which measure should be used for certain metric to
determine different quality factors?

Many different metrics and measures have been used in
the 25 finally included studies. These mainly fall into
dynamic metrics, source code metrics and metrics relating
to documentation. In addition, dynamic metrics across the
12 studies we analyzed in detail suggests measures
relatively well. However looking at the findings from
individual studies, several authors report that quality is not
only determined by process metrics, in the form of product
and also even by documentation metrics. This study also
explains well in our detailed comparison of quality factors
and the metrics to determine the quality.

V. CONCLUSION

Metrics is an important topic in software engineering.
Metrics have the potential to improve the quality of
systems. As a result of this many metrics and measurement
studies in software engineering have been published. In this
paper analysis of 52 studies shows that large range of

Quality Factors

Reusability
Understandability
Usability
Effectiveness
Reliability
Modifiability
Functionality
Extendability

Availability
of

Measures

Vanitha N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6591-6595

www.ijcsit.com 6594

metrics were used but it is difficult for researchers to
identify and analyze the metrics and measures of quality
factors for similar software systems. The set of metrics
presents the essential measures to determine the quality of
software. It can be used by future quality prediction
researchers, by journals and conference reviewers and
software engineers. Of the 52 studies were viewed, only 25
satisfied our criteria and determine what impacts on quality
factors. The results suggest that many metrics and measures
are available to identify the understandability of the system.
It has been also found that many metrics and measures are
available for Object- oriented Systems. From this study, it
has been also studied that there is interdependence between
quality factors as measuring metrics determines more than
one quality factors. Overall we conclude that many good
measures are available in prior to determine quality in
software systems have been reported in software
engineering.

In future, progress or extension of this study can be done
by focusing on other quality attributes or factors software
metrics and measures and for other than object oriented
systems.

REFERENCES

[1] Aman Kumar Sharma, Dr. Arvind Kalia, Dr. Hardeep , “An Analysis
of Optimum Software Quality Factors”, IOSR Journal of
Engineering, 2(4) ,2012 , 663-669.

[2] Tahir, MacDonell, S.G., “A Systematic mapping study on dynamic
software quality metrics”, Proc. 28th IEEE International Conference
on Software Maintenance ,Riva del Garda, Italy, 2012, 326-335.

[3] Object – oriented Static and Dynamic Software Metrics for Design
and Complexity, V.Gupta ,2010.

[4] P.S. Sandhu and G. Singh, “Dynamic Metrics for polymorphism in
Object Oriented Systems”, World Academy of Science, Engineering
and Technology, vol. 39, 2008.

[5] K.P. Srinivasan, Dr. T.Devi, “A Complete and Comprehensive
Metrics Suite for Object-Oriented Design Quality Assessment”,
International Journal of Software Engineering and Its Applications
8(2), 2014, 173-188.

[6] Anna Wingkvist, Morgan Ericssony, Rudiger Lincke, Welf Lowe, “A
Metrics-Based Approach to Technical Documentation Quality”, Proc.
Seventh International Conference on Quality of Information and
Communications Technology , 2010, 476 – 481.

[7] C.Mallikarjuna, K. Sudheer Babu, P. Chitti Babu, “A Report on the
Analysis of Software Maintenance and Impact on Quality Factors”,
International Journal of Engineering Sciences Research-IJESR , Vol
05, Article 01335, 2014.

[8] Laura Sanchez-Gonzalez, Felix Garcia, Jan Mendling, Francisco
Ruiz, Mario Piattini, “Prediction of Business Process Model Quality
based on Structural Met rics” , Conceptual Modeling –ER 2010,
(CanadaSpringer Berlin Heidelberg ,2010) , 458-463.

[9] Vigdis By Kampenes, Quality of Design, Analysis and Reporting of
Software Engineering Experiments: A Systematic Review, doctoral
diss, University of Oslo,2007.

[10] O. Tolga Pusatli, Sanjay Misra , “A Discussion On Assuring
Software Quality In Small And Medium Software Enterprises: An
Empirical Investigation”, Portal of scientific journals of
croatia,18(3),2011,447-452.

[11] Bakota, T., Péter Hegedus, P., Kortvelyesi,P.,Ferenc,R.,Tibor
Gyimothy, “A Probabilistic Software Quality Model, Software
Maintenance”(ICSM), Proc. 27th IEEE International Conference,
2011, 243-252.

[12] Alan Gillies , Software Quality: Theory and Management , 3rd
edition, Lulu.

[13] G Bavota, A De Lucia, A Marcus, R Oliveto, “Using structural and
semantic measures to improve software modularization”, Emprical
Software Engineering, 18(5),2013, 901-932.

[14] Jan-Erik Holmberga, Peter Bishopb, Sofia Guerrab, Nguyen Thuyc ,
“Safety case framework to provide justifiable reliability numbers for
software Systems”, Proc. 11th International Probabilistic Safety
Assessment and Management Conference & The Annual European
Safety and Reliability Conference, 2012, pp. 10-TH2-2.

[15] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering ”(version
2.3),Keele University, UK, Tech. Rep. EBSE Technical Report
EBSE-2007-01, 2007.

[16] K.H.T. Choi and E. Tempero, “Dynamic measurement of
polymorphism”, Australian Conference on Computer Science,
Ballarat, Victoria, 2007,211-220.

[17] Karine Mordal, Nicolas Anquetil, Jannik Laval, “Alexander
Serebrenik,Bogdan Vasilescu, Stephane Ducasse” , Software Quality
Metrics Aggregation In Industry, Journal Of Software: Evolution And
Process,25(10), 2013, 1117-1135.

[18] Rohitt Sharma, Paramjit Singh, Sumit Sharma, “An Approach
Oriented Towards Enhancing a Metric Performance”, International
Journal On Computer Science And Engineering (IJCSE), 4(5), 2012,
743-748.

[19] Jitender Kumar Chhabra and Varun Gupta, “A Survey of Dynamic
Software Metrics”, Journal Of Computer Science and Technology,
25(5), 2010, 1016-1029.

[20] P. Cavano and J. A. McCall, “A framework for the measurement of
software quality”, Proc. of the software quality assurance workshop
on Functional and performance issues, 1978, 133–139.

[21] Jehad Al Dallal, Lionel C. Briand, “A Precise Method-Method
Interaction-Based Cohesion Metric for Object-Oriented Classes”,
ACM Transactions on Software Engineering and Methodology
(TOSEM), 21(2), Article No. 8, 2012.

[22] Lawrence Putnam, Ware Myers, Five Core Metrics: The Intelligence
Behind Successful Software Management, New York, Addition-
Wesley ,2013.

[23] Sonia Montagud, Silvia Abrahao, Emilio Insfran, “A systematic
review of quality attributes and measures for software product
line”, Software Quality Journal, 20(3-4), 2012, 425-486.

[24] Gregor Grambow, Roy Oberhauser, Manfred Reichert, “Contextual
Injection of Quality Measures into Software Engineering Processes”,
International Journal On Advances in Software, 4(1,2),2011,76-99.

[25] Farroq, S.U., Quadri, S,M.K., Ahmad, N., “Metrics, models and
measurements in software reliability”, Proc. IEEE 10th International
Symposium, Herlany, 2012, 441-449.

Vanitha N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6591-6595

www.ijcsit.com 6595

